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Continuous Parameter Markov Processes

1. Poisson process
2. Birth process
3. Death process
4. Birth-and-death process
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Recap: Definition of Continuous Parameter Markov
Chains

Suppose that {N(t); t ≥ 0} is a continuous-parameter
discrete-state stochastic process. The process is called a
continuous parameter Markov chain if for all u, v, w > 0
such that 0 ≤ u < v and nonnegative integers i, j, k,

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].
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Recap: Definition of Continuous Parameter Markov
Chains

If, in addition,

P[N(v + w) = k|N(v) = j]

is independent of v, then the continuous parameter Markov
chain is said to have stationary or homogeneous transition
probabilities.
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Q1: Show that Poisson process is a Markov Pro-
cess.

We want to show that

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].

Let’s start with LHS

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]

= P[N(v + w) = k, N(v) = j, N(u) = i]
P[N(v) = j, N(u) = i] .
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Q1 (cont.)

In Poisson process there are no deaths. Hence, the only
possibility that the event of
[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v] could happen is

• (k − j) events during w period.
• (j − i) events during (v − u) period.
• i events during u period.
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Q1 (cont.)

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]

= P[N(v + w) = k, N(v) = j, N(u) = j]
P[N(v) = j, N(u) = i] .

7



Q1 (cont.)

Intervals that we are considering are mutually exclusive time
intervals.

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v] =
P[N(v+w)−N(v)=k−j,N(v)−N(u)=j−i,N(u)−N(0)=i]

P[N(v)=j,N(u)=i]
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Q1 (cont.)

By definition a Poisson process has independent increments
and therefore we can write down the joint probabilities of
these three events as the product of probabilities.

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v] =
P[N(v+w)−N(v)=k−j]P[N(v)−N(u)=j−i]P[N(u)−N(0)=i]

P[N(v)=j,N(u)=i]
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Q1 (cont.)

Denominator can also be written based on the independent
increment property

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v] =
P[N(v+w)−N(v)=k−j]P[N(v)−N(u)=j−i]P[N(u)−N(0)=i]

P[N(v)−N(u)=j−i]P[N(u)−N(0)=i]

Simplifying the Equation we will get,

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v] =
P[N(v + w) − N(v) = k − j]

(1)
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Q1 (cont.)

Now let’s look at RHS of

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].
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Q1 (cont.)

RHS

P[N(v + w) = k|N(v) = j] = P[N(v + w) = k, N(v) = j]
P[N(v) = j]

= P[N(v + w) − N(v) = (k − j), N(v) − N(0) = j]
P[N(v) − N(0) = j]

(mutually exclusive time intervals)
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Q1 (cont.)

Using the property of independent increments

P[N(v + w) = k|N(v) = j] = P[N(v + w) = k, N(v) = j]
P[N(v) = j]

= P[N(v + w) − N(v) = (k − j), N(v) − N(0) = j]
P[N(v) − N(0) = j]

(mutually exclusive time intervals)

= P[N(v + w) − N(v) = (k − j)]P[N(v) − N(0) = j]
P[N(v) − N(0) = j]

(independent increments)
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Q1 (cont.)

P[N(v + w) = k|N(v) = j] = P[N(v + w) − N(v) = k − j] (2)

From Eq 1 and 2 we prove that

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].

Hence, Poisson process is a “continuous parameter Markov
chain”.
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Q2: Show that the birth process is a Markov chain
process.

We can use the definition itself to show that.

• u - past
• t - present
• t + h - future time point
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Q2 (cont)

Condition for Markov chain process

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].

Postulate of the birth process

P[N(t + h) = n + k|N(t) = n] =

{
λnh + o(h), k=1
o(h), k ≥ 2
1 − λnh + o(h), k = 0

(3)

Suppose N(u) = m. There is no involvement of u and m in
equation 3. Hence, by definition birth process is a markov
process.
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Q2 (cont.)

Postulate of the birth process

P[N(t + h) = n + k|N(t) = n] =

{
λnh + o(h), k=1
o(h), k ≥ 2
1 − λnh + o(h), k = 0

(4)

Suppose N(u) = m. There is no involvement of u and m in
equation 3. Hence, by definition birth process is a Markov
process.

P[N(t + h) = n + k|N(t) = n, N(u) = m] =

{
λnh + o(h), k=1
o(h), k ≥ 2
1 − λnh + o(h), k = 0

(5)
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Distribution of length of stay

• Now we are going to look at the distribution of length of
stay for birth process, death process, birth-and-death
process.

• We have already looked at this property for the Poisson
process.
Let’s recap (Note 6)!

• Let N(t) is a Poisson process with rate λ. We first
generate i.i.d. random variables Tn, n = 1, 2, .., where
Tn ∼ Exponential(λ).

• Tn denote the elapsed time between the (n − 1)st and the
nth event.
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Distribution of length of stay (cont.)

Poisson process is a continuous parameter Markov chain
process. Furthermore, birth process, death process,
birth-and-death processes are also continuous parameter
Markov chain processes. If in general the time elapsed between
two consecutive occurrences of continuous parameter Markov
chain processes follows exponential distribution, then we can
say the time elapsed between two consecutive occurrences of
birth process/ death process/ birth-and-death processes also
follows an exponential distribution.
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• Let’s try to understand the distribution of length of stay
of continuous parameter Markov chain processes.

• Before that let’s look at some important facts about the
exponential distribution.
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Important facts about the exponential distribution

Fact 1

If T ∼ exp(λ), then P(T > t + s|T > t) = P(T > s). This is
called the memoryless property, also known as lack of
aging property or lack of memory.

Exponential distribution is the only continuous distribution
with the memoryless property.

Geometric distribution is the only discrete distribution with
the memoryless property.
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Important facts about the exponential distribution
(cont.)

Fact 2

If Ti ∼ exp(λi), where i = 1, 2, ..., n. Then
M = min(T1, T2, ..., Tn) has an exponential distribution with
parameter ∑n

i=1 λi. That is, M ∼ exp(∑n
i=1 λi).

Fact 3

If Ti ∼ exp(λi), where i = 1, 2, ..., n. Then,

P[Tj = min(T1, T2, ...Tn)] = λj∑n
i=1 λi

.
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Important facts about the exponential distribution
(cont.)

Fact 4

Suppose that Ti ∼ exp(λi). Let k > 0 and T2 = T1 − k. If
T1 ≥ k, then P(T1 > t) = P(T2 > t).

23



Revisit: Back to our problem!

Poisson process is a continuous parameter Markov chain
process. Furthermore, birth process, death process,
birth-and-death processes are also continuous parameter
Markov chain processes. If in general the time elapsed between
two consecutive occurrences of continuous parameter Markov
chain processes follows exponential distribution, then we can
say the time elapsed between two consecutive occurrences of
birth process/ death process/ birth-and-death processes also
follows an exponential distribution.

• Let’s try to understand the distribution of length of
stay of continuous parameter Markov chain
processes.
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Distribution of length of stay - Continuous parameter
Markov chain processes

Suppose that a continuous-time time-homogeneous Markov
chain {N(t) : t ≥ 0} enters state i at some time, (say at time
s ≥ 0)) and let Ti denote the amount of time that the process
stays in state i. Then, for any u > 0

P[Ti ≥ u] = P[N(t) = i; s < t < s + u|N(s) = i)]

for any s ≥ 0.
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Distribution of length of stay - Continuous parameter
Markov chain processes (cont.)

Now for any a, h ≥ 0,

P[Ti ≥ a + h|Ti ≥ a] = P[Ti ≥ a + h]
P[Ti ≥ a]

= P[N(t) = i, s < t ≤ s + a + h|N(s) = i]
P[N(t) = i, s < t ≤ s + a|N(s) = i]

= .

= .

= P[Ti ≥ h]

Your turn: Complete the intermediate steps. 26



This implies that Ti has the memoryless property. A
continuous random variable with exponential distribution has
the memoryless property. Hence, Ti must have an exponential
distribution.

Ti has memoryless property. ⇒ Ti follows an exponential distribution.

This result gives us another way of defining a continuous-time
stationary Markov chain.
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Definition

A continuous parameter stationary Markov process is a
stochastic process having the properties that

1. Each time it enters state i, the amount of time it spends
in that state before making a transition into a different
state is exponentially distributed (say with rate νi or
mean 1

νi
), and

2. When the process leaves state i, it enters state j with
some probability, pij satisfying,

Pii = 0 all i∑
j

Pij = 1 all i
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