STA 331 2.0 Stochastic Processes

11. Birth-and-Death Process - important results (cont)

Dr Thiyanga S. Talagala

Department of Statistics, University of Sri Jayewardenepura

Definition

A continuous parameter stationary Markov process is a stochastic process having the properties that

- 1. Each time it enters state i, the amount of time it spends in that state before making a transition into a different state is exponentially distributed (say with rate ν_i or mean $\frac{1}{\nu_i}$), and
- 2. When the process leaves state i, it enters state j with some probability, p_{ij} satisfying,

$$P_{ii} = 0$$
 all i
 $\sum_{i} P_{ij} = 1$ all i

Birth-and-death process

For birth and death process, let λ_i and μ_i be given by

$$\lambda_i = q_{i,i+1}$$
 and $\mu_i = q_{i,i-1}$.

The values $\{\lambda_i, i \geq 0\}$ and $\{\mu_i, i \geq 0\}$ are called respectively the birth and death rate. Then

$$\nu_i = \lambda_i + \mu_i$$

Then $T_i \sim exp(\lambda_i + \mu_i)$.

Furthermore,

$$P_{i,i+1} = \frac{\lambda_i}{\lambda_i + \mu_i} = 1 - P_{i,i-1}$$

Example 1:

Suppose that life-time of a component of a machine is exponentially distributed with rate λ .

Let X(t) be the state of the machine at time t.

$$X(t) = \begin{cases} 1, & \text{if the machine is operational at time t} \\ 0, & \text{if the machine is not operational at time t} \end{cases}$$
(1)

This is a continuous parameter discrete state Markov process with absorbing barrier state 0 (suppose that there are no repairs).

Example 1 (cont.):

Instantaneous transition probabilities

$$P_{01} = 0$$

and

$$P_{10} = 1$$

.

Hence, $P_{11} + P_{10} = 1$.

Example 1 (cont.):

The probability mass function

$$P_1(t) = P(X(t) = 1) = ?$$

 $P_0(t) = P(X(t) = 0) = ?$

You know the distribution of T_1 . Hence,

$$[X(t)=1] \Rightarrow [T_1 \geq t].$$

Therefore,

$$P(X(t) = 1) = P(T_1 \ge t) = \int_t^{\infty} \lambda e^{-\lambda u} du.$$

Example 1 (cont.):

Your turn: calculate the associate probabilities for,

$$P_1(t) = P(X(t) = 1) = ?$$

$$P_0(t) = P(X(t) = 0) = ?$$

Example 1 (cont.):

second type of transition probability $P_{ij}(t)$.

$$P_{10}(t) = P(X(t+s) = 0|X(s) = 1).$$

Write this interms of T_1

$$P_{10}(t)=P(T_1\leq t).$$

$$T_1 \sim exp(\lambda)$$

You can show that $P_{10}(t) = 1 - e^{-\lambda t}$ and

$$P_{11}(t)=e^{-\lambda t}.$$

Example 2:

A machine is operational for a time that is exponentially distributed with rate α and off or down for a time that is exponentially distributed with rate β . For example, the machine needs a part that has an exponentially distributed lifetime; once it burns out, the fix-it time (time required to obtain a new part) is also exponentially distributed.

$$X(t) = \begin{cases} 1, & \text{if the machine is operational at time t} \\ 0, & \text{if the machine is not operational at time t} \end{cases}$$
(2)

This is a continuous parameter discrete state Markov process There is no absorbing barrier state.

Example 2:

Instantaneous transition prob.	PMF	Transition Prob.
		$P_{00}(t)$
P_{01}	$P_1(t)$	$P_{01}(t)$
		$P_{10}(t)$
P_{01}	$P_0(t)$	$P_{11}(t)$

 $T_1 \sim exp(\alpha)$ and $T_0 \sim exp(\beta)$.

 T_0 - time it takes to repair the component.

Example 3 (One server queue)

Suppose that there is **one** checkout counter at a shopping store. Suppose that customers arrive to a single server system according to a Poisson processing having rate λ and the service time is exponentially distributed with parameter ν .

Example 4 (Two server queue)

Suppose that there are **two** parallel identical checkout counter at a shopping store. The service times are independently and identically distributed. Suppose that customers arrive according to a Poisson processing having rate λ and the service time is exponentially distributed with parameter ν .

Example 5

A telephone operator has a phone with a hold button. Suppose incoming voice calls arrive according to a Poisson process with rate λ . Each call takes an exponentially distributed time with average $1/\nu$ minutes. If a call arrives during a time the phone is busy, it is placed on hold. If another call arrives, it receives a busy tone and must hang up.