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n-step transition probabilities - P

Pji - One step transition probabilities
Pj - n - step transition probabilities

Probability that a process in state / will be in state j after n
additional transitions. That is,

Py = PXosk =X =, 120, 1,j20.



Chapman-Kolmogrov Equations

o0
PZ.J“"’ = Z P for alln, m >0, all'i, j,
k=0

where, P Py represents the probability that starting in i the

process will go to state jin n+ m with an intermediate stop in
state k after n steps.

In-class

This can be used to compute n-step transition probabilities



In-class



In-class

n+m [o/¢] n pm 2 B
P =320 PPy for all n, m >0, all i, j.

Proof:



n - step transition matrix

The n-step transition matrix is

Py R P
PR A P
p(n —




n - step transition matrix (cont.)

The Chapman-Kolmogrov equations imply

P(n+m) P(n P(m)

In particular,

P? = ppl — pp = P2,

By induction,

P(n) _ P(n 1+1) — P~ 1P P".



n - step transition matrix

Proposition

Pl = p'—PxPxPx..xP, n>1.

That is, P is equal to P multiplied by itself n times.



Example 1

Let X; = 0 if it rains on day /; otherwise X; = 1. Suppose
Poo = 0.7 and Pyp = 0.4. Suppose it rains on Monday. Then,
what is the probability that it rains on Friday.



Example 1 - using R

p <- matrix(c(0.7, 0.4, 0.3, 0.6), 2); p

(.11 [,2]
[1,] 0.7 0.3
[2,] 0.4 0.6

Ph*1pl* hph*hp

[,11  [,2]
[1,] 0.5749 0.4251
[2,] 0.5668 0.4332

So that P\ = 0.5749
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Example 2

Recall the example from class in which the weather today
depends on the weather for the previous two days.

07 0 03 O

Sate Yesterday Today Tomorrow Probability

0-RR 1 1 1 07 0.5 0 0.5 0

1SR 0 1 1 05 P=

2RS 1 0 1 0.4 0 04 0 0.6
0 0 1

3-SS 0.2

0 02 0 08

Now suppose that it was sunny both yesterday and the day
before yesterday. What's the probability that it will rain
tomorrow?
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Example 2 (cont.)

p <- matrix(c(0.7, 0.5, 0, 0, 0, O, 0.4, 0.2,
0.3, 0.5, 0, 0, O, 0, 0.6, 0.8), 4)
Ph*hp

[,11 [,21 [,31 [,4]
[1,] 0.49 0.12 0.21 0.18
[2,] 0.35 0.20 0.15 0.30
[3,] 0.20 0.12 0.20 0.48
[4,] 0.10 0.16 0.10 0.64
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Unconditional Probabilities

Suppose we know the initial probabilities,
aj=PXo=1), ,i=0,1,2 ..

and Y ;a; = 1.

According to the Law of total probability

= P(Xo=jNXo =)
i=0

= Z P(X, = j| Xo = ) P(Xo = i)

Z P(" Q;
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Example 3 (based on Example 1)

Let X; = 0 if it rains on day /; otherwise X; = 1. Suppose
Poo = 0.7 and P;g = 0.4. Suppose it rains on Monday.
Suppose P(Xo = 0) = 0.4 and P(Xo = 1) = 0.6. What is the
probability that it will not rain on the 4th day after we start
keeping records?

14



Example 3 (cont.)

Let X; = 0 if it rains on day /; otherwise X; = 1. Suppose
Poo = 0.7 and Py; = 0.4. Suppose it rains on Monday.
Suppose P(Xo = 0) = 0.4 and P(Xo = 1) = 0.6. What is the
probability that it will not rain on the 4th day after we start
keeping records?

p <- matrix(c(0.7, 0.4, 0.3, 0.6), 2)
Ph*%pl* hph*hp

[,11  [,2]
[1,] 0.5749 0.4251
[2,] 0.5668 0.4332
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Example 4

Suppose that a taxi driver operates between Wijerama and
Nugegoda. If the driver is in Wijerama the probability that he
gets a trip to Nugegoda from one passenger or a group of
travelling together is 0.2 and that for him to get a trip nearby
Wijerama is 0.8. If the driver is in Nugegoda he has equal
chance of getting a trip to Wijerama or nearby Nugegoda.
The behaviour of the driver evolves over time in a probabilistic

manner.

0 - Wijerama, 1 - Nugegoda
- 0.8 0.2
05 0.5
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Example 4 (cont.)

i) If the driver is currently at Wijerama, what is the
probability that he will be back at Wijerama after three
trips?
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Example 4 (cont.)

i) If the driver is currently at Wijerama, what is the
probability that he will be back at Wijerama after three

trips?
p <- matrix(c(0.8, 0.5, 0.2, 0.5), 2)
Ph*%ph*hp
(11 [,2]

[1,] 0.722 0.278
[2,] 0.695 0.305
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Example 4 (cont.)

ii) If the driver is at Nugegoda, how many trips on the
average will be in Nugegoda before he next goes to
Wijerama?
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Example 4 (cont.): In-class
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Example 4 (cont.): In-class

Suppose () = (0.5,0.5), equal chance for driver be in either
Wijerama or Nugegoda. What is the probability he will be in

Wijerama after the first trip.
In-class: Method 1
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Probability after n-th step

p(M — pOpnr
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In-class: Method 2
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Types of States

Definition: If P,(-j") > 0 for some n > 0, state j is accessible
from i.

Notation: i — j.

Definition: If i — j and j — i, then i and j communicate.

Notation: <> j.
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Communication is an equivalence relation:

(i) i< ifor all i (reflexive).
(i) i< jimplies j <> i (symmetric).

(iii) <> jand j<> kimply i <> k (transitive).
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In-class: Proof

(i) i< ifor all i (reflexive).
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In-class: Proof

(ii) i< jimplies j <> i (symmetric).
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In-class: Proof

(iii) i<>jand j <> kimply i <> k (transitive).
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In-class: Proof
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= Two states that communicate are said to be in the same
class.

» The concept of communication divides the state space up
into a number of separate classes.

In-class: demonstration
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Theorem (cont.)

Definition: An equivalence class consists of all states that
communicate with each other.

Remark: Easy to see that two equivalence classes are disjoint.

Example: The following P has equivalence classes {0,1} and
{2,3}
0.5 05 0 0
0.5 05 0 0
0 0 075 0.25
0 0 025 0.75

P—
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Equivalence class (cont.)

What about this?

0.5 0.5 0 0
05 03 0.2 0
0 0 075 0.25
0 0 025 0.75

P:
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Irreducible

Definition: A MC is irreducible if there is only one equivalence
class (i.e., if all states communicate with each other).

What about these?

0.5 05 0 0 05 05 0 0

p_ 0.5 05 0 0 p_ 05 03 0.2 0
0 0 075 0.25 0 0 075 0.25

0 0 025 0.75 0 0 025 0.75
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Irreducible (cont.)

What about these?

s 0s 025 0 075
P= { 025 0.75 ] P= L 00
e 0 05 05
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Identify the equivalence classes

Consider a Markov chain with a state space S ={0,1,2, 3,4}
and having the following one-step transition probability matrix.

(04 02 004 O
02 04 01 03 O
P=|01 02 05 01 0.1
0O 0 0 1 0
0O 0 0 0 1
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Problems !

Example 4.10
Example 4.11
Example 4.12

Hntroduction to Probability Models, Sheldon M. Ross
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Classification of States - next week

Reading Section 4.3: Classification of States?

2Introduction to Probability Models, Sheldon M. Ross
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