STA 331 2.0 Stochastic Processes

2. Markov Chains

Dr Thiyanga S. Talagala

Department of Statistics, University of Sri Jayewardenepura

n-step transition probabilities $-P_{i j}^{n}$

$P_{i j}$ - One step transition probabilities
$P_{i j}^{n}-\mathrm{n}$ - step transition probabilities
Probability that a process in state i will be in state j after n additional transitions. That is,

$$
P_{i j}^{n}=P\left(X_{n+k}=j \mid X_{k}=i\right), n \geq 0, \quad i, j \geq 0 .
$$

Chapman-Kolmogrov Equations

$$
P_{i j}^{n+m}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j}^{m} \text { for all } \mathrm{n}, \mathrm{~m} \geq 0, \text { all } \mathrm{i}, \mathrm{j},
$$

where, $P_{i k}^{n} P_{k j}^{m}$ represents the probability that starting in i the process will go to state j in $n+m$ with an intermediate stop in state k after n steps.

In-class

This can be used to compute n-step transition probabilities

In-class

$P_{i j}^{n+m}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j}^{m}$ for all $\mathrm{n}, \mathrm{m} \geq 0$, all i, j.
Proof:

n - step transition matrix

The n-step transition matrix is

$$
\mathbf{P}^{(n)}=\left[\begin{array}{rrrr}
P_{00}^{(n)} & P_{01}^{(n)} & P_{02}^{(n)} & \ldots \\
P_{10}^{(n)} & P_{11}^{(n)} & P_{12}^{(n)} & \cdots \\
\cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdots
\end{array}\right]
$$

n - step transition matrix (cont.)

The Chapman-Kolmogrov equations imply

$$
\mathbf{P}^{(n+m)}=P^{(n)} P^{(m)}
$$

In particular,

$$
\mathbf{P}^{(2)}=\mathbf{P}^{(1)} \mathbf{P}^{(1)}=\mathbf{P} \mathbf{P}=\mathbf{P}^{2} .
$$

By induction,

$$
\mathbf{P}^{(n)}=\mathbf{P}^{(n-1+1)}=\mathbf{P}^{n-1} \mathbf{P}=\mathbf{P}^{n} .
$$

n - step transition matrix

Proposition

$$
P^{(n)}=P^{n}=P \times P \times P \times \ldots \times P, n \geq 1 .
$$

That is, $P^{(n)}$ is equal to P multiplied by itself n times.

Example 1

Let $X_{i}=0$ if it rains on day i; otherwise $X_{i}=1$. Suppose $P_{00}=0.7$ and $P_{10}=0.4$. Suppose it rains on Monday. Then, what is the probability that it rains on Friday.

Example 1 - using R

$\mathrm{p}<-\operatorname{matrix}(c(0.7,0.4,0.3,0.6)$, nrow $=2) ; \mathrm{p}$

$$
[, 1] \quad[, 2]
$$

$\begin{array}{lll}{[1,]} & 0.7 & 0.3\end{array}$
$\begin{array}{lll}{[2,]} & 0.4 & 0.6\end{array}$
$\mathrm{p} \% * \% \mathrm{p} \% * \% \mathrm{p} \% * \% \mathrm{p}$

$$
[, 1] \quad[, 2]
$$

[1,] 0.57490 .4251
[2,] 0.56680 .4332
So that $P_{00}^{(4)}=0.5749$

Example 2

Recall the example from class in which the weather today depends on the weather for the previous two days.

Now suppose that it was sunny both yesterday and the day before yesterday. What's the probability that it will rain tomorrow?

Example 2 (cont.)

$$
\begin{array}{r}
\mathrm{p}<-\operatorname{matrix}(\mathrm{c}(0.7,0.5,0,0,0,0,0.4,0.2, \\
0.3,0.5,0,0,0,0,0.6,0.8), \mathrm{ncol}=4)
\end{array}
$$

$$
\mathrm{p} \% * \% \mathrm{p}
$$

$$
\begin{array}{lllll}
& {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\
{[1,]} & 0.49 & 0.12 & 0.21 & 0.18 \\
{[2,]} & 0.35 & 0.20 & 0.15 & 0.30 \\
{[3,]} & 0.20 & 0.12 & 0.20 & 0.48 \\
{[4,]} & 0.10 & 0.16 & 0.10 & 0.64
\end{array}
$$

Unconditional Probabilities

Suppose we know the initial probabilities,

$$
\begin{aligned}
& \alpha_{i}=P\left(X_{0}=i\right), \quad, i=0,1,2, \ldots \\
& \text { and } \sum_{i} \alpha_{i}=1
\end{aligned}
$$

According to the Law of total probability

$$
\begin{aligned}
P\left(X_{n}=j\right) & =\sum_{i=0}^{\infty} P\left(X_{n}=j \cap X_{0}=i\right) \\
& =\sum_{i=0}^{\infty} P\left(X_{n}=j \mid X_{0}=i\right) P\left(X_{0}=i\right) \\
& =\sum_{i=0}^{\infty} P_{i j}^{(n)} \alpha_{i}
\end{aligned}
$$

Example 3 (based on Example 1)

Let $X_{i}=0$ if it rains on day i; otherwise $X_{i}=1$. Suppose $P_{00}=0.7$ and $P_{10}=0.4$. Suppose it rains on Monday.
Suppose $P\left(X_{0}=0\right)=0.4$ and $P\left(X_{0}=1\right)=0.6$. What is the probability that it will not rain on the 4th day after we start keeping records?

Example 3 (cont.)

Let $X_{i}=0$ if it rains on day i; otherwise $X_{i}=1$. Suppose $P_{00}=0.7$ and $P_{01}=0.4$. Suppose it rains on Monday.
Suppose $P\left(X_{0}=0\right)=0.4$ and $P\left(X_{0}=1\right)=0.6$. What is the probability that it will not rain on the 4th day after we start keeping records?
$\mathrm{p}<-\operatorname{matrix}(c(0.7,0.4,0.3,0.6)$, nrow $=2)$
$\mathrm{p} \% * \% \mathrm{p} \% * \% \mathrm{p} \% * \% \mathrm{p}$

$$
[, 1] \quad[, 2]
$$

[1,] 0.57490 .4251
[2,] 0.56680 .4332

Example 4

Suppose that a taxi driver operates between Wijerama and Nugegoda. If the driver is in Wijerama the probability that he gets a trip to Nugegoda from one passenger or a group of travelling together is 0.2 and that for him to get a trip nearby Wijerama is 0.8 . If the driver is in Nugegoda he has equal chance of getting a trip to Wijerama or nearby Nugegoda. The behaviour of the driver evolves over time in a probabilistic manner.

0 - Wijerama, 1 - Nugegoda
$\mathbf{P}=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.5 & 0.5\end{array}\right]$

Example 4 (cont.)

i) If the driver is currently at Wijerama, what is the probability that he will be back at Wijerama after three trips?

Example 4 (cont.)

i) If the driver is currently at Wijerama, what is the probability that he will be back at Wijerama after three trips?

$$
\begin{aligned}
& \mathrm{p}<-\operatorname{matrix}(c(0.8,0.5,0.2,0.5), \text { ncol=2) } \\
& \mathrm{p} \% * \% \mathrm{p} \% * \% \mathrm{p}
\end{aligned}
$$

$$
[, 1] \quad[, 2]
$$

$$
[1,] \quad 0.7220 .278
$$

$$
[2,] 0.6950 .305
$$

Example 4 (cont.)

ii) If the driver is at Nugegoda, how many trips on the average will be in Nugegoda before he next goes to Wijerama?

Example 4 (cont.): In-class

Example 4 (cont.): In-class

Suppose $P^{(0)}=(0.5,0.5)$, equal chance for driver be in either Wijerama or Nugegoda. What is the probability he will be in Wijerama after the first trip. In-class: Method 1

Probability after n-th step

$$
\mathbf{P}^{(n)}=\mathbf{P}^{(0)} \mathbf{P}^{n}
$$

In-class: Method 2

Types of States

Definition: If $P_{i j}^{(n)}>0$ for some $n \geq 0$, state j is accessible from i.

Notation: $i \rightarrow j$.

Definition: If $i \rightarrow j$ and $j \rightarrow i$, then i and j communicate.
Notation: $i \leftrightarrow j$.

Theorem:

Communication is an equivalence relation:
(i) $i \leftrightarrow i$ for all i (reflexive).
(ii) $i \leftrightarrow j$ implies $j \leftrightarrow i$ (symmetric).
(iii) $i \leftrightarrow j$ and $j \leftrightarrow k$ imply $i \leftrightarrow k$ (transitive).

In-class: Proof

(i) $i \leftrightarrow i$ for all i (reflexive).

In-class: Proof

(ii) $i \leftrightarrow j$ implies $j \leftrightarrow i$ (symmetric).

In-class: Proof

(iii) $i \leftrightarrow j$ and $j \leftrightarrow k$ imply $i \leftrightarrow k$ (transitive).

Note:

- Two states that communicate are said to be in the same class.
- The concept of communication divides the state space up into a number of separate classes.

In-class: demonstration

Theorem (cont.)

Definition: An equivalence class consists of all states that communicate with each other.

Remark: Easy to see that two equivalence classes are disjoint.
Example: The following P has equivalence classes $\{0,1\}$ and $\{2,3\}$
$\mathbf{P}=\left[\begin{array}{rrrr}0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.75 & 0.25 \\ 0 & 0 & 0.25 & 0.75\end{array}\right]$

Equivalence class (cont.)

What about this?
$\mathbf{P}=\left[\begin{array}{rrrr}0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.3 & 0.2 & 0 \\ 0 & 0 & 0.75 & 0.25 \\ 0 & 0 & 0.25 & 0.75\end{array}\right]$

Irreducible

Definition: A MC is irreducible if there is only one equivalence class (i.e., if all states communicate with each other).

What about these?

$$
\mathbf{P}=\left[\begin{array}{rrrr}
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.75 & 0.25 \\
0 & 0 & 0.25 & 0.75
\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{rrrr}
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.3 & 0.2 & 0 \\
0 & 0 & 0.75 & 0.25 \\
0 & 0 & 0.25 & 0.75
\end{array}\right]
$$

Irreducible (cont.)

What about these?

$$
\mathbf{P}=\left[\begin{array}{rr}
0.5 & 0.5 \\
0.25 & 0.75
\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{rrr}
0.25 & 0 & 0.75 \\
1 & 0 & 0 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

Identify the equivalence classes

Consider a Markov chain with a state space $S=\{0,1,2,3,4\}$ and having the following one-step transition probability matrix.

$$
\mathbf{P}=\left[\begin{array}{rrrrr}
0.4 & 0.2 & 0 & 0.4 & 0 \\
0.2 & 0.4 & 0.1 & 0.3 & 0 \\
0.1 & 0.2 & 0.5 & 0.1 & 0.1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Problems ${ }^{1}$

Example 4.10
Example 4.11
Example 4.12
${ }^{1}$ Introduction to Probability Models, Sheldon M. Ross

Classification of States - next week

Reading Section 4.3: Classification of States ${ }^{2}$
${ }^{2}$ Introduction to Probability Models, Sheldon M. Ross

