STA 331 2.0 Stochastic Processes

8. Birth and Death Processes

Dr Thiyanga S. Talagala

Department of Statistics, University of Sri Jayewardenepura

Birth and Death Processes

- The birth-and-death process is a subclass of continuous-time Markov chains.
- The birth-and-death processes are characterized by the property that whenever a transition occurs from one state to another, then this transition can be to a neighbouring state only.

Transition types

- a transition occurs from one state to another and this transition can be to a neighbouring state only.
- Eg: State space $S=\{0,1,2, \ldots, i, \ldots\}$
- transition that occurs from state i, can be only to a neighboring state $(i-1)$ or $(i+1)$.

Birth rate and Death rate

Birth rate

λ_{i} - birth rate from state $i, i \geq 0$
Death rate
μ_{i} - death rate from state $i, i \geq 0$

Queueing systems

1. Birth - equivalent to the arrival of a customer.
2. Death - equivalent to the departure of a served customer.

Notations

A continuous-time Markov chain $[X(t), t \in T]$ with state space $S=\{0,1,2, \ldots\}$ with rates

$$
\begin{gathered}
q_{i, i+1}=\lambda_{i}, \quad i=0,1, \ldots, \\
q_{i, i-1}=\mu_{i}, \quad i=1,2, \ldots \\
q_{i, j}=0, j \neq i \pm 1, \quad j \neq i, \quad i=0,1, \ldots, \text { and } \\
q_{i}=\left(\lambda_{i}+\mu_{i}\right), \quad i=0,1, \ldots, \text { and } \mu_{0}=0
\end{gathered}
$$

Pure birth process, pure death process, birth-anddeath process

i) a pure birth process if $\mu_{i}=0$ for $i=1,2, \ldots$

- No decrements, only increments.
ii) a pure death process if $\lambda_{i}=0$ for $i=1,2, \ldots$
- No increments, only decrements.
iii) a birth-and-death process if some of the λ_{i} 's and some of the μ_{i}^{\prime} 's are positive.

Examples of random phenomena modelled through birth and death processes

- Spread of epidemic disease
- Mutant gene dynamics
- Cell kinetics (proliferation of cancer cells)

Special cases

1. Linear birth process: Yule-Furry process
2. Linear death process
3. Linear birth and death process
4. $M / M / I$ queue

Pure Birth Process

- Special case of a continuous-time Markov process and a generalisation of a Poisson process.
- Consider a population of individuals where only the appearances of new individuals, which are called "birth" occur.

General birth processes

Let us consider a birth process whose total number of individuals at time t is denoted by a discrete random variable $N(t)$. As parameter t varies $\{N(t): t \geq 0\}$ represents a stochastic process with a continuous parameter (time) space and a discrete state space.

Let us assume that the birth rate depends on the present size of the population. Further we assume that the births occur according to the following postulates:

$$
P[N(t+h)=n+k \mid N(t)=n]= \begin{cases}\lambda_{n} h+o(h), & k=1 \\ o(h), \\ 1-\lambda_{n} h+o(h), & k \geq 2 \\ k=0\end{cases}
$$

General birth processes (cont)

Condition 1

$P[N(t+h)=n+k \mid N(t)=n]= \begin{cases}\lambda_{o n} h+o(h), & k=1 \\ o(h) \\ 1-\lambda_{n} h+o(h), & k=0 \\ k=0\end{cases}$
where λ_{n} is the rate at which the births occur at time t and n being the size of the population at time t.

Condition 2
$N(0)>0$

Your turn

Compare the differences in conditions between Poisson process, Non-homogeneous Poisson Process and Birth Process

Goal: Probability Mass Function of $N(t)$

What is the probability that the population size at a given time, t , equals $N(t)=n$?

$$
P_{n}(t)=P[N(t)=n]=?
$$

For example,

$$
\begin{aligned}
& P_{0}(t)=P[N(t)=0]=? \\
& P_{1}(t)=P[N(t)=1]=? \\
& P_{2}(t)=P[N(t)=2]=?
\end{aligned}
$$

Linear Birth Process (Yule-Furry Process)

When, $\lambda_{n}=n \lambda$, i.e. when the birth rate is linear in the present size of the population.

Then the pure birth process is said to a Linear Birth Process or Yule-Furry Process.

Let is assume that there is only one individual in the population initially, $N(0)=1$. It can be shown that for any $t>0$.

$$
\begin{gathered}
P(N(t)=0)=0 \\
P(N(t)=n)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}, n \geq 1
\end{gathered}
$$

Proof (general situation):

For $n=0$
$P_{0}(t+h)=P(N(t)=0) P(N(t+h)=0 \mid N(t)=0)$
$P_{0}(t+h)=P_{0}(t)\left(1-\lambda_{0} h+o(h)\right)$
i.e.
$P_{0}(t+h)=P_{0}(t)-\lambda_{0} h P_{0}(t)+o(h) P_{0}(t)$
$\lim _{h \rightarrow 0} \frac{P_{0}(t+h)-P_{0}(t)}{h}=-\lim _{h \rightarrow 0} \lambda_{0} P_{0}(t)+\lim _{h \rightarrow 0} \frac{o(h)}{h} P_{0}(t)$
i.e.
$P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)$.
We assume that there is only one individual in the population initially, $N(0)=1$. Hence, $P[N(t)=0]=0$.
That is $P_{0}(t)=0$.

Proof: (cont)

For $n \geq 1$

$$
\begin{aligned}
P_{n}(t+h) & =P(N(t)=n) P(N(t+h)=n \mid N(t)=n)+ \\
& P(N(t)=n-1) P(N(t+h)=n \mid N(t)=n-1)+ \\
& \sum_{r=2}^{n-1} P(N(t)=n-r) P(N(t+h)=n \mid N(t)=n-r)
\end{aligned}
$$

i.e

$$
\begin{gathered}
P_{n}(t+h)=P_{n}(t)\left(1-\lambda_{n} h+o(h)\right)+ \\
\quad P_{n-1}(t)\left(\lambda_{n-1} h+o(h)\right)+ \\
o(h)
\end{gathered}
$$

Proof: (cont)

$$
\begin{aligned}
& P_{n}(t+h)=P_{n}(t)-\lambda_{n} h P_{n}(t)+\lambda_{n-1} h P_{n-1}(t)+o(h) \text { for } n \geq 1 \\
& \lim _{h \rightarrow 0} \frac{P_{n}(t+h)-P_{n}(t)}{h}=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\lim _{h \rightarrow 0} \frac{o(h)}{h}
\end{aligned}
$$

i.e.
$P_{n}^{\prime}(t)=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t)$ for $n \geq 1$.
Therefore the partial differential-difference equations is
For $n \geq 1, P_{n}^{\prime}(t)=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t)$.

When $n=1$

$$
\begin{gathered}
P_{1}^{\prime}(t)=-\lambda_{1} P_{1}(t) \\
\int \frac{P_{1}^{\prime}(t)}{P_{1}(t)} d t=-\lambda_{1} \int d t
\end{gathered}
$$

$$
\begin{aligned}
\ln P_{1}(t) & =-\lambda_{1} t+c \\
P_{1}(t) & =c_{1} e^{-\lambda_{1} t}
\end{aligned}
$$

When $t=0, c_{1}=1$

$$
P_{1}(t)=e^{-\lambda_{1} t}
$$

When $n=2$

$$
P_{2}^{\prime}(t)=-\lambda_{2} P_{2}(t)+\lambda_{1} P_{1}(t)
$$

$$
P_{2}^{\prime}(t)+\lambda_{2} P_{2}(t)=\lambda_{1} e^{-\lambda_{1} t}
$$

Multiply by $e^{\lambda_{2} t}$

$$
\begin{gathered}
P_{2}^{\prime}(t) e^{\lambda_{2} t}+\lambda_{2} P_{2}(t) e^{\lambda_{2} t}=\lambda_{1} e^{-\lambda_{1} t} e^{\lambda_{2} t} \\
\int \frac{d}{d t}\left[e^{\lambda_{2} t} P_{2}(t)\right] d t=\int \lambda_{1} e^{\left(\lambda_{2}-\lambda_{1}\right) t} d t \\
e^{\lambda_{2} t} P_{2}(t)=\frac{\lambda_{1} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{\lambda_{2}-\lambda_{1}}+c
\end{gathered}
$$

When $t=0$,
We know that $P_{2}(0)=0$. hence, $c=-\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}$.
Hence,

$$
P_{2}(t)=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2} t}\left[e^{\left(\lambda_{2}-\lambda_{1}\right) t}-1\right]
$$

Linear birth process (Yule-Furry Process)

When,

$$
\lambda_{n}=n \lambda .
$$

That is the birth rate is linear in the present size of the population.

Let us assume that there is only one individual in the population initially. That is $N(0)=1$.

Then the difference-differential equations of the linear birth process takes the form
$P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t)$ for $n \geq 1$ with the initial conditions $P_{1}(0)=1$ and $P_{n}(0)=0$ for $n \geq 2$.

Linear birth process (Yule-Furry Process) (cont)

$P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t)$ for $n \geq 1$ with the initial conditions $P_{1}(0)=1$ and $P_{n}(0)=0$ for $n \geq 2$.
Multiplying the equation for n by z^{n} and summing over all n we obtain

$$
\frac{\partial}{\partial t} \sum_{n=1}^{\infty} P_{n}(t) z^{n}=-\lambda z \frac{\partial}{\partial z} \sum_{n=1}^{\infty} P_{n}(t) z^{n}+\lambda z^{2} \frac{\partial}{\partial z} \sum_{n=1}^{\infty} P_{n-1}(t) z^{n-1}
$$

Let $\Pi(z, t)=\sum_{n=1}^{\infty} P_{n}(t) z^{n}$. Then the above equations becomes

$$
\frac{\partial \Pi(z, t)}{\partial t}=-\lambda z \frac{\partial \Pi(z, t)}{\partial z}+\lambda z^{2} \frac{\partial \Pi(z, t)}{\partial z}
$$

Linear birth process (Yule-Furry Process) (cont)

i.e. $\frac{\partial \prod(z, t)}{\partial t}=\lambda z(z-1) \frac{\partial \prod(z, t)}{\partial z}$
$\frac{\partial \prod(z, t)}{\partial t}-\lambda z(z-1) \frac{\partial \prod(z, t)}{\partial z}=0$
Subsidiary equations take the form

$$
\frac{d t}{1}=\frac{d z}{-\lambda z(z-1)}=\frac{d \prod}{0}
$$

Two independent solutions can be obtained one from $d \Pi=0$ and the other from $-\lambda d t=\frac{d z}{z(z-1)}$.
$d \Pi=0 \Rightarrow \Pi(z, t)=$ constant.
$-\lambda d t=\frac{d z}{z(z-1)} \Rightarrow \frac{z}{z-1} e^{-\lambda t}=$ constant.

Linear birth process (Yule-Furry Process) (cont)

The general solution can be written as
$\Pi(z, t)=f\left(\frac{z}{z-1} e^{-\lambda t}\right)$ where f is an arbitrary function.
The initial conditions $P_{1}(0)=1$ and $P_{n}(0)=0$ for $n \geq 2$ imply that $\Pi(z, 0)=z$.

$$
\therefore \prod(z, 0)=f\left(\frac{z}{z-1}\right)=z
$$

Let $\omega=\frac{z}{z-1} \Rightarrow z=\frac{\omega}{\omega-1}$ and hence we obtain $f(\omega)=\frac{\omega}{\omega-1}$.

Linear birth process (Yule-Furry Process) (cont)

$$
\therefore \prod(z, t)=\frac{\frac{z}{z-1} e^{-\lambda t}}{\frac{z}{z-1} e^{-\lambda t}-1}=\frac{z e^{-\lambda t}}{z e^{-\lambda t}-(z-1)}=\left(1-\frac{z-1}{z} e^{-\lambda t}\right)^{-1}
$$

Considering coefficients of z^{n} we have

$$
P_{n}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1} \text { for } n \geq 1 \text {. }
$$

In proving the above results we assume that initially there is only one individual in the population. That is $\mathrm{N}(0)=1$.

Now let's prove for the case $N(0)=a, a \geq 1$. For that we use moment generating functions.

Moment generating function of $N(t)$

Let

$$
M_{N(t)}(\theta, t)=E\left[e^{N(t) \theta}\right]
$$

be the moment generating function of $N(t)$. Then, for $t>0$,

$$
\begin{align*}
M_{N(t)}(\theta, t) & =\sum_{n=0}^{\infty} e^{n \theta} P(N(t)=n) \\
& =\sum_{n=0}^{\infty} e^{n \theta} P_{n}(t) \tag{1}
\end{align*}
$$

Moment generating function of $N(t)$ (cont.)

We assume that $N(0)=a>0$. Hence, $P_{n}(t)=0$ for all $n<a$. Hence,

$$
\begin{equation*}
M_{N(t)}(\theta, t)=\sum_{n=a}^{\infty} e^{n \theta} P_{n}(t) . \tag{2}
\end{equation*}
$$

Moment generating function of $N(t)$ (cont.)

Now we take derivative w.r.t θ. Then we get,

$$
\frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)=\sum_{n=a}^{\infty} n e^{n \theta} P_{n}(t) .
$$

The derivative w.r.t t is

$$
\begin{aligned}
\frac{\partial}{\partial t} M_{N(t)}(\theta, t) & =\sum_{n=a}^{\infty} e^{n \theta} P_{n}^{\prime}(t) \\
& =\sum_{n=a}^{\infty} e^{n \theta}\left[-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t)\right] \\
& =-\sum_{n=a}^{\infty} n e^{n \theta} \lambda P_{n}(t)+\sum_{n=a}^{\infty}(n-1) e^{n \theta} \lambda P_{n-1}(t)
\end{aligned}
$$

Moment generating function of $N(t)$ (cont.)

Since $P_{a-1}(t)=0$, the second summation starts at $a+1$. Hence,

$$
\begin{aligned}
\frac{\partial}{\partial t} M_{N(t)}(\theta, t) & =-\sum_{n=a}^{\infty} n e^{n \theta} \lambda P_{n}(t)+\sum_{n=a+1}^{\infty}(n-1) e^{n \theta} \lambda P_{n-1}(t) \\
& =-\sum_{n=a}^{\infty} n e^{n \theta} \lambda P_{n}(t)+\sum_{m=a}^{\infty} m e^{(m+1) \theta} \lambda P_{m}(t) \\
& =-\lambda \sum_{n=a}^{\infty} n e^{n \theta} P_{n}(t)+\lambda e^{\theta} \sum_{m=a}^{\infty} m e^{m \theta} P_{m}(t) \\
& =-\lambda \frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)+\lambda e^{\theta} \frac{\partial}{\partial \theta} M_{N(t)}(\theta, t) \\
& =\lambda\left(e^{\theta}-1\right) \frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)
\end{aligned}
$$

Moment generating function of $N(t)$ (cont.)

$$
\begin{equation*}
\frac{\partial}{\partial t} M_{N(t)}(\theta, t)-\lambda\left(e^{\theta}-1\right) \frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)=0 \tag{5}
\end{equation*}
$$

Note:

A partial differential equation (PDE) for a function $z(x, y)$ is Lagrange type if it takes the form (General form of first-order quasilinear PDE)

$$
\begin{equation*}
P(x, y, z) \frac{\partial z}{\partial x}+Q(x, y, z) \frac{\partial z}{\partial y}=R(x, y, z) . \tag{6}
\end{equation*}
$$

The associated characteristic system of ordinary differential equations.

Note (cont)

$$
\begin{equation*}
\frac{d x}{P(x, y, z)}=\frac{d y}{Q(x, y, z)}=\frac{d z}{R(x, y, z)} \tag{7}
\end{equation*}
$$

is known as the characteristic (auxiliary) system of equation (5). Suppose that two independent particular solutions of this system have been found in the form
$u(x, y, z)=C_{1}$ and $v(x, y, z)=C_{2}$, where where C_{1} and C_{2} are arbitrary constants.

Then the general solution to equation (5) can be written as

$$
\begin{equation*}
\phi(u, v)=0 \tag{8}
\end{equation*}
$$

where ϕ is an arbitrary function of two variables.

Note (cont.)
With equation (6) solved for v, one often specifies the general solution in the form $v=\psi(u)$, where $\psi(u)$ is an arbitrary function of one variable. The ψ can be determined using the boundary conditions.

Moment generating function of $N(t)$ (cont.)

Revisit equation 4,

$$
\begin{equation*}
\frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)-\lambda\left(e^{\theta}-1\right) \frac{\partial}{\partial \theta} M_{N(t)}(\theta, t)=0 \tag{9}
\end{equation*}
$$

According to the auxiliary system of equation in (6),

$$
\begin{gathered}
\frac{d t}{1}=\frac{d \theta}{-\lambda\left(e^{\theta}-1\right)}=\frac{M_{N(t)}}{0} \\
\frac{d t}{1}=\frac{d M_{N(t)}}{0}
\end{gathered}
$$

$$
\frac{d M_{N(t)}}{d t}=0 \Rightarrow M_{N(t)}(\theta, t)=\text { constant }
$$

Moment generating function of $N(t)$ (cont.)

Furthermore consider,

$$
\begin{align*}
& \frac{d t}{1}=\frac{d \theta}{-\lambda\left(e^{\theta}-1\right)} \\
& \begin{aligned}
\lambda d t & =-\frac{1}{\left(e^{\theta}-1\right)} d \theta \\
& =\frac{-e^{-\theta}}{1-e^{-\theta}} d \theta
\end{aligned} \tag{10}
\end{align*}
$$

From equation (9) we can write

$$
\lambda t=-\ln \left(1-e^{-\theta}\right)+c
$$

Moment generating function of $N(t)$ (cont.)

Furthermore

$$
\ln \left(e^{\lambda t}\right)+\ln \left(1-e^{-\theta}\right)=c .
$$

Hence,

$$
e^{\lambda t}\left(1-e^{-\theta}\right)=\text { constant } .
$$

Hence, the general solution for eq(8) is

$$
M_{N(t)}(\theta, t)=\Psi\left[e^{\lambda t}\left(1-e^{-\theta}\right)\right] .
$$

Moment generating function of $N(t)$ (cont.)

The boundary conditions $P_{a}(0)=1$, and $P_{n}(0)$ for $n \neq a$, imply that $M_{N(t)}(\theta, 0)=\sum_{n=a}^{\infty} e^{n \theta} P_{n}(0)=e^{a \theta}$,

$$
M_{N(t)}(\theta, 0)=e^{a \theta}=\Psi\left(1-e^{-\theta}\right)
$$

Let $\alpha=1-e^{-\theta}$. Then, $e^{\theta}=(1-\alpha)^{-1}$. Hence,

$$
e^{a \theta}=\Psi(\alpha)=(1-\alpha)^{-a}
$$

Moment generating function of $N(t)$ (cont.)

Therefore,

$$
M_{N(t)}(\theta, t)=\Psi\left[e^{\lambda t}\left(1-e^{-\theta}\right)\right]=\left[1-e^{\lambda t}\left(1-e^{-\theta}\right)\right]^{-a} .
$$

Let $p=e^{-\lambda t}$ and $p+q=1$. Then,
$M_{N(t)}(\theta, t)=\left[1-p^{-1}\left(1-e^{-\theta}\right)\right]^{-a}=\left[\frac{p-1+e^{-\theta}}{p}\right]^{-a}=\left(\frac{p}{e^{-\theta}-q}\right)^{a}$
Now from this MGF, we can derive the moments of $N(t)$.

Moment generating function of $N(t)$ (cont.)

It can be shown that

$$
\begin{aligned}
& E(N(t))=a / p=a e^{\lambda t} \text { and } \\
& Y N(t)]=a(1-p) / p^{2}=a\left(1-e^{-\lambda t}\right) e^{2 \lambda t}
\end{aligned}
$$

Furthermore, we recognize the above MGF is in the form of the MGF of a negative binomial random variable Y, with probability mass function

$$
\begin{aligned}
& P(Y=y)=^{y-1} C_{a-1} p^{a-1} q^{y-1-(a-1)} p={ }^{y-1} C_{a-1} p^{a} q^{y-a}, \text { for } \\
& y=a, a+1, \ldots
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& P(N(t)=n)={ }^{n-1} C_{a-1} p^{a} q^{n-a}={ }^{n-1} C_{a-1} e^{-\lambda t a}\left(1-e^{-\lambda t}\right)^{n-a} \text { for } \\
& n=a, a+1, \ldots
\end{aligned}
$$

Moment generating function of $N(t)$ - Alternative approach

Using probability generating functions. Let $G_{N(t)}(s, t)$ is called the probability generating function,

$$
G_{N(t)}(s, t)=E\left(s^{N(t)}\right)=\sum_{n=0}^{\infty} s^{n} P_{n}(t) .
$$

The coefficients of s^{n} of the expansion of $G_{N(t)}(s, t)$ will give $P_{n}(t)$.

Linear birth process (Yule-Furry Process)

Summary:

When, $N(0)=1$
$P(N(t)=0)=0$
$P(N(t)=n)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}, n \geq 1$.

When, $N(0)=a$
$P(N(t)=n)={ }^{n-1} C_{a-1} p^{a} q^{n-a}={ }^{n-1} C_{a-1} e^{-\lambda t a}\left(1-e^{-\lambda t}\right)^{n-a}$ for $n=a, a+1, \ldots$

Exercise

Consider a pure birth process on the states $\{0,1, \ldots, N\}$ for which $\lambda_{k}=(N-k) \lambda$ for $k=0,1, \ldots, N$. Suppose $N(0)=0$.
Find $P n(t)=P(X(t)=n)$ for $n=0,1$ and 2.

