STA 331 2.0 Stochastic Processes*
 Birth-and-Death Processes

Prerequisite: Partial Differential Equations

A partial differential equation for a function $z(x, y)$ is Lagrange type if it takes the form

$$
\begin{equation*}
P(x, y, z) \frac{\partial z}{\partial x}+Q(x, y, z) \frac{\partial z}{\partial y}=R(x, y, z) \tag{1}
\end{equation*}
$$

This equation contains i) partial differential coefficients, ii) independent variables and iii) dependent variables. The auxiliary equations are

$$
\begin{equation*}
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \tag{2}
\end{equation*}
$$

Let $u(x, y, z)=C_{1}$ and $v(x, y, z)=C_{2}$ are two independent solutions of auxiliary equations. Here, C_{1} and C_{2} are constants.

Then the general solution to equation (1) can be written as $f(u, v)=0$ or $u=\phi(v)$.

Example 1

Solve the following partial differential equation,

$$
y^{2} p-x y q=x(z-2 y)
$$

where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
The auxiliary equations are

$$
\begin{equation*}
\frac{d x}{y^{2}}=\frac{d y}{-x y}=\frac{d z}{x(z-2 y)} \tag{3}
\end{equation*}
$$

Consider the first two terms in the equation (3)

$$
\begin{equation*}
\frac{d x}{y}=\frac{d y}{-x} \tag{4}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
x d x=-y d y \tag{5}
\end{equation*}
$$

\]

Integrating equation (5) we get

$$
\frac{x^{2}}{2}=-\frac{y^{2}}{2}+\frac{C_{1}}{2}
$$

Hence, we have

$$
\begin{equation*}
x^{2}+y^{2}=C_{1} . \tag{6}
\end{equation*}
$$

Consider the last two terms in the equation (3)

$$
\begin{equation*}
\frac{-d y}{x y}=\frac{d z}{x(z-2 y)} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
2 y d y=y d z+z d y \tag{8}
\end{equation*}
$$

Integrating equation (7) we get

$$
\begin{equation*}
y^{2}-y z=C_{2} . \tag{9}
\end{equation*}
$$

From equations (6) and (9)

$$
x^{2}+y^{2}=f\left(y^{2}-y z\right)
$$

Answer: $\quad x^{2}+y^{2}=f\left(y^{2}-y z\right)$.

Example 2 (This is related to the proof of birth process).

Solve the following partial differential equation.

$$
\begin{equation*}
\frac{\partial \prod(z, t)}{\partial t}=-\lambda z \frac{\partial \prod(z, t)}{\partial z}+\lambda z^{2} \frac{\partial \prod(z, t)}{\partial z} \tag{10}
\end{equation*}
$$

where

$$
\prod(z, t)=\sum_{n=1}^{\infty} P_{n}(t) z^{n}
$$

We can simplify the equation (10) and obtain

$$
\begin{equation*}
\frac{\partial \prod(z, t)}{\partial t}=\lambda z(z-1) \frac{\partial \prod(z, t)}{\partial z} \tag{11}
\end{equation*}
$$

Auxiliary/Subsidiary equations take the form

$$
\begin{equation*}
\frac{d t}{1}=\frac{d z}{-\lambda z(z-1)}=\frac{d \prod}{0} \tag{12}
\end{equation*}
$$

From the first two parts of the equation (12)

$$
\begin{equation*}
-\lambda d t=\frac{d z}{z(z-1)} \tag{13}
\end{equation*}
$$

From the last two parts of the equation (12)

$$
\begin{equation*}
d \prod=0 \tag{14}
\end{equation*}
$$

Integrating equations (13) and (14)

$$
\begin{equation*}
\frac{z}{z-1} e^{-\lambda t}=\text { constant } \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\prod(z, t)=\text { constant } \tag{16}
\end{equation*}
$$

The general solution can be written as,

$$
\prod(z, t)=f\left(\frac{z}{z-1} e^{-\lambda t}\right)
$$

where f is an arbitrary function.

[^0]: *Thiyanga S Talagala

